
AIAA-92-2734-CP

FUTURE DIRECTIONS IN COMPUTING AND CFD*

F. Ron Baileyt
and

Horst D. Simon~
NASA Ames Research Center, Moffett Field, California 94035

Abstract.

generations of computers as well as improve-
ments in algorithms. As a results CFD has be-
come an ever more powerful tool in the design
of aerospace systems. The high computational
demands of aeroscience applications have been
the driving force behind the recent rapid de-
velopment of CFD. Moreover, CFD has been
an equally successful modeling tool in a vari-
ety of other fields, such as automotive engineer-
ing. Now, in the 1990's it has become apparent
that conventional supercomputers cannot sus-
tain CFD's continued high rate of advancement.
Thus CFD has reached a critical juncture, since
it is becoming more and more apparent that fu-
ture growth in computational speed will be in-
creasingly the result of parallel processing tech-

nology.

In recent years CFD on massively parallel ma-
chines has become a reality. In this paper we
summarize some recent trends both in high per-
formance computing, and in CFD using parallel
machines. We discuss the long term compu-
tational requirements for accomplishing some
of the large scale problems in computational
aerosciences, and current hardware and archi-
tecture trends. We present performance results
obtained from the implementation of some CFD
applications on the Connection Machine CM-
2 and the Intel iPSC/860 at NASA Ames Re-
search Center. Finally we argue that only mas-
sively parallel machines will be able to meet
these grand challenge requirements, and we
outline the computer science and algorithm re-
search challenges ahead.

In the last several years a wide variety of par-
allel machines have become available for explor-
ing the issues of using parallelism in scientific
computing in general and CFD in particular.
Most of the early ("zero-th generation") ma-
chines that appeared between 1983 and 1987
were rather experimental in nature, and served
mainly for research investigations in areas such
as algorithms, languages, and operating sys-
tems for parallel computing. In 1988 and 1989
several members of a first generation of paral-
lel supercomputers became available. We want
to use the term "supercomputer" here because
these parallel supercomputers such as the Con-
nection Machine CM-2, the Intel iPSCj860, the
NCUBE2, and others are in their larger config-
urations are comparable both in memory and
peak computational speed to the performance
of the most powerful conventional supercom-
puters, e.g., the Cray Y-MP. However, it is well

1. Introduction

In the nineteen seventies and eighties signif-
icant advances occured in computational fluid
dynamics (CFD) as a result of improvements in
processing speed and storage capacity of new

.Copyright @ 1992 by the American Institute of
Aeronautics and Astronautics, Inc. No copyright is as-
serted in the United States under Title 17, U.S. Code.
The U.S. Government has a royalty-free license to ex-
ercise all rights under the copyright claimed herein for
Government purposes. All other rights are reserved by
the copyright owner.

tDirector of Aerophysics, Fellow AIAA
*Research Scientist. The author is an employee of

Computer Sciences Corporation. This work is supported
through NASA Contract NAS 2-12961.

149



ailel computing for computational areoscience
applications.

2. The Case for More Computer Power

2.1. Requirements for Design

known that these machines are still very defi-
cient in their systems aspects, for example in
their ability to handle a large number of users.
Now, in 1992, we are at the threshold of a
second generation of parallel supercomputers,
which offer considerable improvements in com-
putational power over the previous generation
as well as an improved software and user envi-
ronment.

Because of their considerable potential com-
putational power, parallel supercomputers are
increasingly considered as an alternative to the
more conventional supercomputers based on a
small number of powerful vector processors.
Researchers who want to advance the state of
the art in CFD are thus faced with the issue of
taking a serious look at parallel processing, in
particular at the massively parallel, distributed
memory machines, which promise to lead to the
most advances in computational speed in the
1990s.

In spite of many difficulties initial perfor-
mance results for parallel machines are ex-
tremelyencouraging. In some instances (see
for example the work at UTRC described by
Egolfl) researchers have demonstrated the po-
tential of massively parallel systems for CFD
and are moving (or will soon move) research
applications into the engineering community for
production use. In this paper we will present
the case for massive parallelism by first demon-
strating the n.eed for more ~omputationalpower
arising from the requirements of Grand Chal-
lenge Applications. A grand challenge is a fun-
damental problem in science and engineering,
with broad applications, whose solution would
be enabled by the application of high perfor-
mance computing resources which could be-
come available in the near future. A grand
challenge for CFD will be discussed in section
2. We then demonstrate in section 3 that the
performance increases of microprocessors indi-
cate that massively parallel systems based on
commodity chips will be the technology lead-
ing to Teraflops level performance. Finally we
will summarize the experience with parallel ma-
chines at NASA Ames Research Center, and
present a critique of the current state of par-

In 1991, a state-of-the-art simulation of the
flow about a Harrier operating in-ground ef-
fect required approximately 2.8 million points,
20 Mwords of run-time memory, and about
40 hours of CPU time on a Cray Y-MP run-
ning at a sustained speed of approximately
160 MFLOPS. Such a computation solves the
N avier-Stokes equations for the viscous flow
about the Harrier using, in this case, a simple
algebraic turbulence model. The grid was the
coarsest possible that would still allow most of
the important flow features to be resolved. The
predicted flow features are in good agreement
with flight flow visualization.2

It is estimated that to obtain "engineering-
accuracy" predictions of surface pressures, heat
transfer rates, and overall forces, the grid size
will have to be increased to a minimum of 5.0
million points. If the unsteady motion of the
flow structures is to be resolved, at least 50,000
iterations will also be required. Also, more ad-
vanced turbulence modeling must be included.
In summary, we anticipate the following mini-
mum requirements in terms of floating point op-
erations for just the ~xternal :Bow simulation el-
ement of future grand challenge computations:

.5,000,000 grid points

.50,000 iterations

.5,000 operations per point per iteration

.1015 operations per problem

The actual computational speed require-
ments for such a calculation depend on the
mode in which the calculation is carried out.
In a proof-of-concept mode such a calculation
may be carried out only once as a "heroic ef-
fort". If this could be done in 100 to 1000
hours turn-around-time, it would translate into

150



a sustained speed between 3 and 0.3 GFLOPS.
Design and automated design modes require a
much lower turn-around-time and thus result
in much higher requirements for computational
speed. The corresponding figures are summa-
rized in Table 1.

V jSTOL aircraft design have been established
and combined with the numbers for the base-
line external aerodynamics prediction.3 Very
quickly Gword and near TFLOP requirements
arise. The details are given in Table 2.3

Table 2: Flops and Run-time Memory Require-
ments for 5 Hour Run", "~~T ~~~

I Mwords i GFLOPS

These computational requirements are ac-
companied by a corresponding increase in mem-
ory and storage requirements. Approximately
40 storage locations are required per grid point.
If all of the computational zones remain in
memory, this translates to a requirement for
200 million words of run-time memory (to date,
often:a desirable feature for parallel systems).
For unsteady flow analysis 100-1000 time steps
(at Swords per point) must be stored. This
leads to a requirement of 4-40 gwords of "disk"
storage per problem.

It should be noted that the factors in Ta-
ble 2 are based on the assumption that the
physical frequencies introduced because of the
multi-disciplinary integration can be resolved
with the time steps required by the aerodynam-
ics simulation. Additional compute till!e may
be required if the multi-disciplinary system ex--

hibits higher frequency modes which must be
resolved.

2.2. ,Requirements for Multidisciplinary
..

Analysis

3. Why Massively Parallel Computers?

Over the last three to four years there has
been a dramatic increase in the level of accep-
tance of massively parallel machines by the sci-
entific user community. Users of massively par-
allel machines are no longer seen as a "lunatic
fringe", but rather as people on the forefront of
scientific computing in 1990s. Public opinion
on parallel machines has almost completely re-
versed itself. Today, in 1992, skepticism about
the practical use of parallel processing has been
replaced by almost universal acceptance of the
belief that a massively parallel machine will de-
liver performance at the Teraflops level by the

The CFD Grand Challenge computations of
the 90's will be multi-disciplinary, combining
computational techniques useful in analyzing
a number of individual areas such as struc-
tures, controls, and acoustics, in addition to the
baseline CFD simulations. It is possible in all
these areas to derive estimates for the perfor-
mance requirements. These estimates are given
as multiplicative factors of additional require-
ments over the single-discipline baseline CFD
simulation.3

Because these factors are multiplicative
computational resource requirements can in-
crease rapidly for multi-disciplinary computa-
tions. In order to demonstrate this point,
the corresponding factors for multi-disciplinary

151



"
..
In
"in"
,~
10
~
C-o
C
'0
C-
o,
.=
10
,g
'0
In

end of the decade, and that almost all Grand
Challenge scientific computing will carried out
on massively parallel machines.

The interaction between computer architec-
ture and hardware advances on one side and
the requirements of large scale scientific appli-
cations on the other side are multifacetted and
complex. Currently the the rapid growth and
the increased acceptance of massively parallel
computers might be equally attributed to the
increased demands of the scientific user com-
munity as exemplified in the Grand Challenge
Problems4, which have been forcing us to con-
sider parallel computers more seriously.

Clearly there have been some fundamental
changes in the relative performance of VLSI
based microprocessors and custom designed
vector processors used in the more traditional
supercomputers. Hennessy and Jouppi esti-
mate that microprocessors have been improv-
ing in CPU performance at a rate of between
1.5 to 2 times per year during the last six
to seven years, whereas improvement rates for
mainframes where only about 25 % per year.5
The authors also quote two major factors which
have contributed to the high growth rate of mi-
croprocessor performance:

Figure 1: Comparison of Supercomputer and
Microprocessor Floating Point Performance

.The dramatic increase of the number of
transistors available on a chip.

.Architectural advances, including the use
of RISC ideas, pipelining, and caches.

correlated to the the performance of the cor-
responding parallel systems. The current In-
tel iPSC/860, which uses the i860 processor, is
widely regarded as the first true supercomputer
produced by Intel, whereas its predecessor the
iPSC 12 was at best an experimental research
machine.

Estimates and studies investigating future
trends in micropr'ocessor performance are
highly optimistic. A recent study estimates
that by the year 2000 a single chip is expected
to have four processors with a combined per-
formance of about 1 GFLOPS.6 Thus the rate
of performance increases for microprocessors is
expected to continue to be higher than tradi-
tional supercomputers.

Even though these arguments do not address
other important aspects of supercomputer sys-
tems, such as bandwidth to memory, memory
size, 110 devices etc. (see Lundstrom 7 for a

more detailed discussion), we believe that mi-
croprocessors will be the pacing item in the
future development of massively parallel sys-
tems. All indications are therefore that "the
attack of the killer micros" is going to be highly
successful.8

In Figure 1 these trends are summarized by
comparing the performance of both micropro-
cessors and of single processor of vector super-
computers of the last decade. Obviously the
single processor performance of vector super-
computers has improved only by about an order
of magnitude within the last a decade. In con-
trast microprocessors have experienced a dra-
matic jump in their floating point capabilities
around 1987. H we restrict ourselves only to
the Intel family of microprocessor alone, we
see about two orders of magnitude improve-
ment from the Intel 80387 to the Intel i860.
This large performance again can be directly

4. Experience with Massively Parallel

Computers

The availability of the parallel testbed sys-

152



terns at NASA's Numerical Aerodynamic Sim-
ulation (NAS) facility since 1989 led to a num-
ber of CFD and computational aeroscience ap-
plication.s to be implemented on these paral-
lel machines at the NAS facility. Here we
briefly survey the work carried out by re-
searchers at the Applied Research Branch at
NAS.3,9,10,11,12,13,14,15,16 Some of the early work
on the Connection Machine is summarized in
several papers in a book.17

4.1. NAS Parallel Benchmarks

tiple, independent, sparse, but structured sys-
tems of linear equations at each time step. Each
of three sets of solves keeps one coordinate di-
rection fixed, and solves the multiple sets of lin-
ear systems in the direction of the grid planes
orthogonal to the fixed direction. Thus the
three dimensional computational grid must be
accessed by planes in three different directions.
This has a very important implication for dis-
tributed memory machines: no single alloca-
tion scheme for the three dimensional grid is
optimal. In order to carry out the solver phase
efficiently in the three different grid directions
the grids will have to be redistributed among
the processors. The key to an efficient imple-
mentation of the simulated application bench-
mark is then to devise optimal distribution and
communication schemes for the transition be-
tween the three solve phases at each time step.
(It should be pointed out that this discussion of
the simulated applications does not apply to all
production CFD codes at NASA Ames. For ex-
ample the widely used F3D code, as well as the
UPS code, are based on a two factor scheme.)

The first of the simulated applications is the
L U benchmark. In this benchmark, a regular-
sparse, block (5 X 5) lower and upper triangu-
lar system is solved. This problem represents
the computations associated with the implicit
operator of a newer class of implicit CFTh.al-
gorithms, typified at NASA Ames by the code
INS3D~LU.18 This problem exhibits a some-
what limited amount of parallelism compared
to the next two.

The second simulated CFD application is
called the scalar penta-diagonal (SP) bench-
mark. In this benchmark, multiple inde-
pendent systems of non-diagonally dominant,
scalar, penta-diagonal equations representative
of computations associated with the implicit
operators of CFD codes such as ARC3D at
NASA Ames Research Center .19

The third simulated CFD application is
called the block tri-diagonal (BT) benchmark.
In this benchmark, multiple independent sys-
tems of non-diagonally dominant, block tri-
diagonal equations with a (5 X 5) block size
are solved. SP and BT are similar in many

The NAS Parallel Benchmarks have been
developed at NASA Ames Research Cen-
ter to study the performance of parallel
supercomputers.9,11 They represent a novel ap-
proach to benchmarking in that the eight
benchmark problems are specified in a "pen-
cil and paper" fashion. In other words, the
complete details of the problem to be solved
are given in a technical document, and except
for a few restrictions, benchmarkers are free to
select the language constructs and implemen-
tatio~itechniques best suited for a particular
system.

Performance results for "kernel" benchmarks
do not fully reflect the computational require-
ments.-,of a realistic, state-of-the-art CFD appli-
cation. This is because a data structure that is
optimal for one particular part of the compu-
tation on a given system might be very ineffi-
cient for another part of the computation. As a
result, the three "simulated -CFD application"
benchmarks were devised. These three bench-
marks are intended to accurately represent the
principal computational and data movement re-
quirements of modern implicit CFD applica-
tions. They model the main building blocks
of CFD codes designed at NASA Ames for the
solution of 3D Euler IN avier-Stokes equations
using finite-volume/finite-difference discretiza-
tion on structured grids.

There is one important feature which char-
acterizes these simulated applications from a
computational point of view. All three involve
approximate factorization techniques, which in
turn require the solution of three sets of mul-

153



Table 3: Results for the L U Simulated CFD
Application

Time/Iter.
~~_ec)~~

Y-MP 1.73
0.25
3.05
1.90
5.23
3.40
2.29

MFLOPS

(Y-MP)
246

1705
139
224
82

125
186

iPSCj860

No.
Proc.

1
8

64
128
8K

16K
32K

CM-2

4.2. Structured Grid Applications

Structured grid flow solvers, in particular
multi-block structured grid flow solvers, are the
main class of production CFD tools at NASA
Ames. A number of different efforts were di-
rected toward the implementation of such ca-
pabilities on parallel machines. One of the
first CFD results on the CM-2 was the work
by Levit and Jespersen which was recently ex-
tended to three dimensions.13,14,15 Their imple-
mentation is based on the successful ARC2D
and ARC3D codes developed by Pulliam.19
Barszcz and Chawla have implemented F3D,
a successor code to ARC3D, on the CM-2.12
On the iPSC/860 Weeratunga has implemented
ARC2D, ARC3D and F3D.I0 Weeratunga also
has developed three simulated CFD applica-
tions based on structured grid flow solvers fbr
the N AS Parallel Benchmarks, which are de-
scribed in the NAS Parallel Benchmarks.II It
is important to note that he was able to de-
velop the parallel versions of ARC3D and F3D
fairly quickly based on the experience and the
existing implementation of the simulated appli-
cation in the N AS Parallel Benchmarks. The
NAS Parallel Benchmarks thus have an impor-
tant second use beyond the performance eval-
uation of the massively parallel systems: they
have proven as a useful template for the devel-
opment of structured grid CFD applications on
parallel machines.

respects, but there is a fundamental difference
with respect to the communication to compu-
tation ratio.

Performance figures for the three simulated
CFD applications are shown in Tables 3, 4 and
5. Timings are cited in seconds per iteration.
In all three tables results are reported for grids
of size 64 X 64 X 64. A complete solution of
the L U benchmark requires 250 iterations. For
the SP benchmark, 400 iterations are required.
For the BT benchmark, 200 iterations are re-
quired. The MFLOPS in these tables for the
parallel machines are based on an operation
count established for the sequential version of
the program using the hardware performance
monitor on the Cray Y-MP. Generally it was
found that the performance of the parallel ma-
chines at NASA Ames is in the range of about
one to two processors of a Cray Y -MP .

154



The contrpl volumes are non-overlapping poly-
gons which surround the vertices of the mesh,
called the "dual" of the mesh. Associated with
each edge of the original mesh is a dual edge.
Fluxes are computed along each edge of the
dual in an upwind fashion using an approximate
lliemann solver. Piecewise linear reconstruc-
tion is employed which yields second order ac-
curacy in smooth regions. A four stage Runge-
Kutta scheme is used to advance the solution
in time. Fluxes, gradients and control volumes
are all constructed by looping over the edges
of the original mesh. A complete description
of the algorithm can be found in the papers by
Hammond et al.20,21 It is assumed that a trian-
gularization of the computational domain and
the corresponding mesh has been computed.

In both implementations the same four el-
ement wing cross-section test case has been
used. The test case unstructured mesh includes
15606 vertices, 45878 edges, 30269 faces, and
949 boundary edges. The flow was computed
at a freestream Mach number of .1 and 0 de-
grees angle of attack. The code for this test case
runs at 150 MFLOPS on the NAS Cray Y-MP
at NASA Ames, and requires 0.39 seconds per
time step. In the Cray implementation, vector-
ization is achieved by coloring the edges of the
mesh.

Details of their implementation on parallel
machines as well as final performance results for
ARC3D and F3D have not yet been published.
In order to demonstrate the potential of parallel
machines for production CFD applications, we
quote here some earlier results on ARC2D.1O

In Tables 6 and 7 the performance of ARC2D
on the iPSCj860 for several different grid sizes
is given. The rapid drop off in efficiencies
also shows inadequate bandwidth and high la-
tency for both in-processor and interprocessor
dat~ paths. These issues are addressed in fu-
turemachines from Intel such as the Delta and
Paragon machines, which substantially increase
the'interprocessor communication bandwidth.
It should be noted that the efficiency remains
~gh, if the grid size is scaled up with the num-
ber of processors.

4.3.1 SIMD Implementation of
Unstructured Solver

For the implementation on the CM-2 Ham-
mond and Barth used a novel partitioning of the
problem which minimizes the computation and
communication costs on a massively parallel
computer .21 An important aspect of the work
by Hammond and Barth is the use of fast com-
munication. The SIMD implementation takes
advantage of this by using a mapping technique
developed by Hammond and Schreiber and a
"Communication Compiler" developed for the
CM-2 by Dahl.22.23 The use of these techniques
results in a factor of 30 reduction in commu-
nication time compared to using naive or ran-
dom assignments of vertices to processors and
the router. Originally, using 8K processors of

4.3. Unstructured Grid Applications

We discuss here work on an unstructured
upwind finite-volume explicit flow solver for
the Euler equations in two dimensions that is
well suited for massively parallel implementa-
tion. The mathematical formulation of this flow
solver was proposed and implemented on the
Cray-2 by Barth and Jespersen?O This solver
has been implemented on the CM-2 by Ham-
mond and Barth, and on the Intel iPSC/860 by
Venkatakrishnan, Simon, and Barth.16,21

The unstructured grid code developed by
Barth is a vertex-based finite-volume scheme.

155



the CM-2 and a virtual processor (VP) ratio of
2, Hammond and Barth carried out 100 time
steps of the flow solver in about 71.62 seconds.
An improved implementation by Hammond re-
sulted in 43 seconds per 100 time steps, which
is equivalent to 136 MFLOPS.24 This does not
include setup time.

4.3.2 MIMD Implementation of
Unstructured Solver

have resulted from grid partitioning. Since a
finite volume approach is adopted, the commu-
nication at the inter-processor bounda:ries con-
sists of summing the local contributions to in-
tegrals such as volumes, fluxes, gradients etc.

The performance of the Intel iPSCj860 on
the test problem is given in Table 8. The
MFLOPS given are based on operation counts
using the Cray hardware performance monitor.
The efficiency E in % is computed as

-M F LO P S with N procs
100E- * .

N * (MFLOPS with 1 proc)

Table 8: Performance of Unstructured Grid
Code on the Intel iPSC/860

Proc. sec/steo I MFLOPS I E (%) I

In summary the performance figures on the
unstructured grid code are given in Table 9,
where all MFLOPS numbers are Cray Y-MP
equivalent numbers.

Table 9: Performance Comparison of Unstruc-
tured rid Code

Machine I Proc. sec/step MFLOPS

Similar to the SIMD implementation one of
the key issues is the partitioning of the unstruc-
tured mesh. In order to partition the mesh
Venkatakrishnan et al. employ a new algorithm
for the graph partitioning problem, which has
been discussed recently by Simon, and which
is based on the computation of eigenvectors of
the Laplacian matrix of a graph associated with
the mesh.16,25 Details on the theoretical foun-
dations of this strategy are given by Pot hen et
al.26 Detailed investigations and comparisons
to other strategies have shown that the spec-
tral partitioning produces sub domains with the
shortest boundary, and hence tends to minimize
communication cost.25

After the application of the partition algo-
rithm of the previous section, the whole finite
volume grid with triangular cells is partitioned
into P subgrids, each subgrid contains a num-
ber of triangular cells which form a single con-
nected region. Each subgrid is assigned to one
processor. All connectivity information is pre-
computed, using sparse matrix type data struc-
tures.

Neighboring subgrids communicate to each
other only through their interior boundary ver-
tices which are shared by the processors con-
taining the neighboring subgrids. In the serial
version of the scheme, field quantities (mass,
momentum and energy) are initialized and up-
dated at each vertex of the triangular grid us-
ing the conservation law for the Euler equations
applied to the dual cells. Each processor per-
forms the same calculations on each subgrid as
it would do on the whole grid in the case of a
serial computation. The difference is that now
each subgrid may contain both physical bound-
ary edges and interior boundary edges, which

5. Future Directions

The results in Table 10 summarize the ef-
forts discussed in this paper. They demon-
strate that on current generation para1lel ma-
chines performance on actual CFD applications
is obtained which is approximately equivalent

156



to the performance of one to two processors of
a Cray Y -MP. All applications considered here
are not immediately parallelized and both on
SIMD and MIMD machines considerable effort
must be expended in order to obtain an efficient
implementation. It has been demonstrated by
the results obtained at NASA Ames that this
can be done, and that super computer level per-
formance can be obtained on current generation
parallel machines.

Furthermore Weeratunga's parallel ARC3D
code has been used by Ryan for production runs
in connection with HPCC applications. In so
far unpublished work Ryan has demonstrated
the the accuracy and efficiency of the paral-
lel code in several validation cases using sin-
gle zone Euler computations. For example, for
a grid of size 67 x 60 x 112 involving 450,240
gridpoints for a HSCT wing-body combination,
he has obtained on 128 processors of the In-
tel iPSCj860 a performance of about 10 mi-
croseconds per gridpoint per iteration, which is
somewhat better than a single processor Cray
Y -MP performance. This work demonstrates
that we have reached about the same perfor-
mance level on massively parallel machines as
we have on traditional supercomputers, even
when performing production type calculations.

impediment in obta.ining the peak realizable
performance from these machines. One of these
requirements is for unstructured, general com-
munication with low latency and high band-
width, which arises both in structured and un-
structured applications. The other requirement
is for high bandwidth for a global exchange as
it occurs in array transposition. This is im-
portant for the structured grid problems, since
three dimensional arrays have to be accessed in
the direction of the three different grid planes.
Neither the CM-2 nor the iPSCj860 deliver the
communication bandwidth necessary for these
CFD applications. Experience has shown that
CFD applications require on the order of one
memory reference per floating point operation
and a balanced system should have a mem-
ory bandwidth comparable to its floating point
performance. In these terms, current parallel
systems deliver only a fraction of the required
bandwidth.

Another main issue in massively parallel
computing is designing efficient algorithms.
One of the key lessons learned is that simpler
algorithms such as explicit methods for CFD
may parallelize easily and thus lead to very
high and impressive MFLOPS figures. How-
ever, their high speed cannot overcome (even
in the massively parallel setting) their inher-
ent weaknesses in term of convergence. Sim-
ply expressed, an explicit algorithm may run
10 times faster on a parallel machine, but still
may take 100 times longer to converge. Ex-
perience with ARC3D and other implicit algo-
rithms, which involve any of the popular ap-
proximate factorization schemes has shown that

.current implicit algorithms stra.in the commu-
nication capabilities of massively parallel ma-
chines, and therefore perform at speeds far be-
low the peak of the parallel machines. The way
out of .this algorithmic dilemma may be via
"hierarchical algorithms"}1 These algorithms
include approaches such as multigrid schemes,
hierarchical basis preconditioners, doma.in de-
composition methods, and adaptive mesh re-
finement methods. What these algorithms have
in common is the fact that just like implicit
algorithms they provide immediate global dis-

Table 10: Summary of Performance on Parallel
Machines

(fraction of single processor Gray Y-MP

performance)
Application CM-2 ! :PSC/860

32K Droc. 128 proc.

result for 8K processors

Our results also demonstrate another feature
which has been found across a number of appli-
cations at NASA Ames: massively parallel ma-
chines quite often obtain only a fraction of their
peak performance on realistic applications. In
the applications considered here, there are at
least two requirements which form the primary

157



nologies Research Center. In H. D. Simon,
editor, Scientific Applications of the Con-
nection Machine, pages 38 -63. World Sci-
entific, 1989.

Table 11: CFD Convection Diffusion Problem
Implemented on NCUBE2

Solver Floating CPU Time MFLOPS
AI~orithm Point Ops. (sec)

3.82 X 1010l

1.21 X 1012

2.59 X 1011
I 2.13 X 10°9

[2] M. H. Smith, K. Chawla, and W. R. Van
Dalsem. Numerical simulation of a com-
plete STOVL aircraft in ground effect.
AIAA Paper 91-3293.

[3] Horst D. Simon, William Van Dalsem, and
Leonardo Dagum. Parallel CFD: Cur-
rent Status and Future Requirements. In
Horst D. Simon, editor, Parallel CFD -Im-
plementations and Results Using Parallel
Computers, pages 1 -28. MIT Press, Cam-
bridge, Mass., 1992.

[4] Committee on Physical, Mathematical,
and Engineering Sciences. Grand Chal-
lenges: High Performance Computing and
Communications, Office of Science and
Technology Policy, National Science Foun-
dation, Washington, D.C., 1991.

[5] J. Hennessy and N. Jouppi. Computer
technology and architecture: An evolving
interaction. IEEE Computer, 24(9):18 -

29, September 1991.

tribution of information. However they cap-
ture the global interactions in a more efficient
way, which does not require the large amount
of global communication as in traditional im-
plicit algorithms. Therefore they appear to
be the right compromise class of method for
highly parallel architectures. This is demon-
strated n the results in Table 11 which show the
considrably faster performance of a multigrid
algorithm.28 These results also demonstrate the
fallacy to measure the performance of a parallel
machine by MFLOPS alone, when co~paring
different algorithms. Because of their poten-
tial for parallel machines, it is planned to in-
crease research efforts into these type of hierar-
chical algorithms at the N AS Applied Research
Branch in the near future.

These new algorithmic efforts together with
significant increases in compute power are
essential to accomplishing the computational
Grand Challenges of the 1990's. Even de-
tailed single discipline computations will re-
quire GFLOP performance, with the multi-
disciplinary simulations becoming just feasible
on the most advanced systems of the 1990's.

Acknowledgement. Section 2 of this pa-
per is abbreviated version of section 6 in the
paper.3 We thank William R. Van Dalsem for
providing us with his detailed analysis of future

computational requirements.

[6] P. P. Gelsinger, P. A. Gargini, G. H.
Parker, and A. Y. C. Yu. Microprocessors
circa 2000. IEEE Spectrum, pages 43 -47,
October 1989.

[7] S. F. Lundstrom. Supercomputing systems
-a projection to 2000. Computing Systems
in Engineering, 1(2 -4):145 -151, 1990.

[8] E. D. Brooks and K. H. (eds.) Warren. The
1991 MPCI yearly report: The attack of
the killer micros. Technical Report UCRL-
JC-107022, Lawrence Livermore National
Laboratory, Livermore, CA 94550, July
1991.

References
[9] D. Bailey, E. Barszcz, J. Bar-

ton, D. Browning, R. Carter, L. Dagum,
R. Fatoohi, P. Frederickson, T. Lasinski,

[1] T. Alan Egolf. Scientific applications of the
Connection Machine at the United Tech-

158



[17] H. D. Simon, editor. Scientific Applica-
tions of the Connection Machine, Singa-
pore, 1989. World Scientific.

R. Schreiber, H. Simon, V. Venkatakrish-
nan, and S. Weeratunga. The NAS Paral-
lel Benchmarks. Int. J. of Supercomputer
Applications, 5(3):63 -73, 1991.

[18] S. Yoon, D. Kwak, and L. Chang. LU-
SGS implicit algorithm for implicit three
dimensional Navier-Stokes equations with
source term. AIAA Paper 89-1964-CP.

[10] D. Bailey, E. Barszcz, R. Fatoohi, H. Si-
mon, and S. Weeratunga. Performance
results on the Intel Touchstone Gamma
Prototype. In David W. Walker and
Quentin F. Stout, editors, Proceedings of
the Fifth Distributed Memory Computing
Conference, pages 1236 -1246, Los Alami-
tos, California, 1990. IEEE Computer So-
ciety Press.

[19] T. H. Pulliam. Efficient solution methods
for the N avier-Stokes equations. Lecture
Notes for The Von Karman Institute for
Fluid Dynamics Lecture Series, Jan. 20 -

24, 1986.

[20] T.J. Barth and D.C. Jespersen. The design
and application of upwind schemes on un-
structured meshes. Paper AIAA 89-0366.

[11] D. H. Ba.iley, J. Barton, T. Lasinski, and
H. Simon(editors). The NAS Parallel
Benchmarks. Technical Report RNR-91-
02, NASA Ames Research Center, Moffett
Field, CA 94035, January 1991. [21] S. Hammond and T. Barth. On a Mas-

sively Parallel Euler Solver for U nstruc-
tured Grids. In Horst D. Simon, editor,
Parallel CFD -Implementations and Re-
sults Using Parallel Computers, pages 55
-70. MIT Press, Cambridge, Mass., 1992.

[12] E. Barszcz and K. Chawla. F3D on
the CM-2. In T. Pulliam, editor, Com-
pendium of Abstracts, NASA CFD Con-
ference, March 1991, pages 56 -57.
NASA Office of Aeronautics Exploration
and Technology, March 1991. (22] E. Denning Dahl. Mapping and com-

piled communication on the Connection
Machine system. In David W. Walker and
Quentin F. Stout, editors, Proceedings of
the Fifth Distributed Memory Computing
Conference, pages 756 -766, Los Alamitos,
California, 1990. IEEE Computer Society
Press.

[13] C. Levit and D. Jespersen. Explicit
and implicit solution of the N avier-Stokes
equations on a massively parallel com-
puter. Technical report, NASA Ames Re-
search Center, Moffett Field, CA, 1988.

[14] C. Levit and D. Jespersen. A computa-
tional fluid dynamics algorithm on a mas-
sively parallel computer. Int. J. Supercom-
puter Appl., 3(4):9 -27, 1989.

[23] S. Hammond and R. Schreiber. Mapping
unstructured grid problems to the Connec-
tion Machine. Technical Report 90.22, RI-
ACS, NASA Ames Research Center, Mof-
fett Field, CA 94035, October 1990.

[15] C. Levit and D. Jespersen. Numerical
simulation of a flow past a tapered cylin-
der. Technical Report RNR-90-21, NASA
Ames Research Center, Moffett Field, CA

94035, October 1990.

[24] S. Hammond. Mapping Unstructured Grid
Computations to Massively Parallel Com-
puters. PhD thesis, RPI, 1992.

[16] V. Venkatakrishnan, H. Simon, and
T. Barth. A MIMD implementation of
a parallel Euler solver for unstructured
grids. The Journal of Supercomputing,

1992 (to appear).

[25] H. D. Simon. Partitioning of unstructured
problems for parallel processsing. Comput-
ing Systems in Engineering, 2(2/3):135 -

148, 1991.

159



[26] A. Pothen, H. Simon, and K.-P. Lion. Par-
titioning sparse matrices with eigenvectors
of graphs. .SIAM J. Mat. Anal. Appl.,
11(3):430 -452, 1990.

[27] Tony F. Chan. Hierarchical algorithms and
architectures for parallel scientific comput-
ing. In S. Gallopoulos and A. Sameh, edi-
tors, Proceedings of the 1 g90 International
Conference on Supercomputing, pages 318
-329, New York, 1990. ACM Press.

[28] J. N. Shadid and R. S. Tuminaro. Iter-
ative Methods for Nonsymmetric Systems
on MIMD Machines". Proceedings of the
Fifth SIAM Conference on Parallel Pro-
cessing for Scientific Computing, SIAM,
Philadelphia, 1992, to appear.

160


